Skip to content Skip to navigation

Aplicaţii GIS în Geomorfologie

mihai.niculita's picture

Aplicaţii GIS în Geomorfologie

Introducere

Cercetarea geomorfologică modernă este indisolubil legată de tehnologia geospatială și de sistemele informaționale geografice/știința informațiilor geografice (SIG/GIS). Datorită avansurilor tehnologice rapide ale teledetecției, geodeziei, fotogrammetriei, informaticii și GIS-ului, aplicarea instrumentelor de analiză care utilizează informații digitale ale suprafaței terenului a revoluționat cercetarea cantitativă în geomorfologie (Bishop, 2013). În ultimele trei decenii, GIS-ul a influențat din ce în ce mai multe sub-domenii ale geomorfologiei. Aplicațiile software GIS sunt concepute pentru a facilita investigațiile spațiale, de exemplu, prin analize geostatistice sau descrierea matematică a suprafețelor și, prin urmare, sunt legate în mod inerent de metodologia și conceptele geomorfologiei. Inclusiv apariția GIS este legată de utilizarea suprapunerii în geomorfologie (Roger Tomlinson, “părintele GIS-ului” fiind un geomorfolog specializat în geomorfologie glaciară) extinsă ulterior în utilizarea terenului (Tomlinson, 1967). Instrumentele GIS sunt de folos multor domenii de cercetare de frontieră în geomorfologie, de la descrierea cantitativă a formelor de relief până la modelarea proceselor, investigarea interrelațiilor forme-proces și legăturilor cu condițiile climatice și de mediu sau evaluarea fluxurilor de sedimente. Mai mult, procesarea și modelarea formelor de relief, analiza statistică și regionalizarea suprafețelor, precum și vizualizarea grafică și crearea hărților sunt caracteristici cheie ale GIS-ului aplicat în geomorfologie.
Un punct de plecare pentru studiile GIS este în mod obișnuit modelul numeric al terenului (MNT/DEM) cu date raster de diferite tipuri. Cu toate acestea, instrumentele GIS permit, de asemenea, conectarea informațiilor de teledetecție cu date de interpolare, de exemplu, caracteristici ale suprafeței de terenului, rate de proces sau informații subterane, înregistrate cu sisteme de teledetecție sau geofizică.

Rădăcinile geomorfometriei pot fi identificate în studiile timpurii ale lui Penck (1894). Ideile sale de pionierat privind formele de relief au condus la stabilirea structurilor taxonomice care au fost utilizate în multe studii ulterioare (de exemplu, Ahnert, 1970; Kugler, 1975; Evans, 1972). O nouă eră în aplicarea GIS în studiile geomorfologice a început, însă, aproape 100 ani mai târziu, în anii ’90. Lucrari clasice ale lui Dikau et al. (1991), Moore și colab. (1991), Pike și Dikau (1995) sau Wilson și Gallant (2000) s-au concentrat pe clasificările digitale ale formelor de teren și progresele geomorfometrice generale utilizând DEM-uri, respectiv.

Primele aplicații ale GIS pe teme geomorfologice tradiționale, cum ar fi alunecările de teren, eroziunea solului și distribuția permafrostului montan a avut succes la scară regională sau locală (Chairat și Delleur, 1993; Deroo și colab., 1989; Dikau și Jäger, 1995; Eash, 1994; Jäger, 1997; Keller, 1992; vanWesten și Terlien, 1996; Koethe și Lehmeier, 1993).

De la sfârșitul anilor ‘90, observăm o utilizare din ce în ce mai mare a GIS-ului în studiile geomorfologice. Această dezvoltare este puternic legată de progresele informaticii, teledetecției și fotogrammetriei, precum și geofizicii superficială (Bishop, 2013). În special, disponibilitatea seturilor de date digitale globale a impulsionat aplicațiile și cercetarea în GIS pentru suprafața terenului și analiza proceselor. La scară globală, DEM-urile cu rezoluții cuprinse între 1 și 30 m sunt acum disponibile pentru întregul glob terestru (GLOBE, SRTM, GDEM, ALOS).

În plus, ambele tehnici de scanare cu laser (LIDAR: LIght Detection And Ranging) și structura din mișcare (SFM), atât la sol cât și în aer furnizează DEM-uri de înaltă rezoluție (

Aplicațiile GIS în geomorfologie se extind de la abordări de vizualizare pură, clasificare a reliefului, a suprafaței terenului și analiză hidrologică, modelarea proceselor geomorfologice și eroziunii, detectarea modificărilor topografice și modelarea hazardului și riscului. În timp ce multe aplicații care se concentrează pe analiza suprafeței terestre, detectarea schimbărilor topografice sau modelarea riscului sunt efectuate în aplicații specifice GIS, unele abordări folosesc software statistic (de exemplu, pachetul software R) sau software special de modelare (de exemplu, Matlab, IDL) pentru a efectua analize geospațiale. De exemplu, modelarea proceselor erozionale și evoluția reliefului necesită deseori cerințe care depășesc capacitățile software GIS și sunt folosite alte resurse (de exemplu, Chen și colab., 2014; Coulthard, 2001; Tucker and Hancock, 2010).

În timp ce software-ul GIS a devenit mai puternic și chiar a furnizat instrumente grafice avansate, o creștere simultană a cartării geomorfologice nu s-a realizat. Acest lucru este oarecum surprinzător, deoarece suprapunerea diferitelor strate geomorfologice reprezintă unul dintre cele mai importante instrumente în aplicațiile GIS și îmbunătățesc aplicabilitatea hărților (Otto și Smith, 2013). Cu toate acestea, cartografierea geomorfologică și GIS-ul au devenit o combinație evidentă (Gustavsson și colab., 2006; Otto și Dikau, 2004; Schoeneich, 1993). Mai mult, hărțile geomorfologice servesc acum ca un produs intermediar pentru analizele cantitative ale bugetului de sedimente.

Pentru aceasta, modelarea GIS a modelelor numerice ale terenului este combinată cu informații subterane, cum ar fi grosimea solului sau a regolitului, care este derivată din sondaje geofizice. Cunoștințele acumulate despre distribuția spațială a tipurilor de depozite și sedimentelor joacă un rol important în studiile bugetelor cantitative de sedimente (Otto și colab., 2009; Schrott și colab., 2003b; Theler și colab., 2008).

Multe abordări utile de modelare GIS au fost dezvoltate în domeniul riscurilor naturale. Alunecările de teren, inundațiile, avalanșele sau eroziunea solului sunt hazarde ale căror caracteristici, cum ar fi magnitudinea sau extinderea spațială depind puternic de pantă, expoziție sau alți parametri care pot fi integrați în mod ideal și afișați în mediile GIS (de ex., Gruber și Mergili, 2013; Gruber și Bartelt, 2007; Lan și colab., 2007; vanWesten și Terlien, 1996; Wilford și colab., 2004; Wichmann și Becht, 2006). Evaluarea riscului folosind GIS combină adesea analiza geomorfometrică cu analiza geostatistică a parametrilor asociați pentru a genera modele de susceptibilitate spațială (Carrara și Guzzetti, 1995). Recenzii cuprinzătoare privind metodologiile aspecte și evaluări ale riscurilor bazate pe GIS pot fi găsite în Guzzetti et al. (1999), Huabin și colab. (2005), și van Westen și colab. (2008).

Aplicabilitatea GIS în Geomorfologie a „explodat”, mai ales după apariția calculatoarelor personale (după anii 1980) și a generalizării modelelor numerice ale suprafeței terenului (după anii 2000). SIG este utilizat în cele trei etape ale demersului geomorfologic: inventariere/cartare, analiză și modelare.

Inventarierea cu ajutorul SIG se referă la: conversia raster/vector prin digitizare, conversia datelor alfanumerice obținute prin cartare topografică sau GPS.

Analiza cu ajutorul SIG se referă la: crearea rapoartelor statistice geomorfometrice pe baza datelor raster și vector cu atribut.

Modelarea cu ajutorul SIG se referă la: creare unor modele de reprezentare a dinamicii proceselor geomorfologice, și aplicarea lor.

Oguchi (2006) a identificat o serie de direcții majore care sunt urmărite la ora actuală:
1. analiza geomorfometrică generală a variabilelor geomorfometrice;
2. analiza geomorfometrică a rețelei hidrografice și a bazinelor hidrografice;
3. cartarea semi automată a reliefului;
4. modelarea proceselor geomorfologice;
5. modelare susceptibilității spațiale pentru estimarea hazardului și riscului geomorfologic;
6. detecția și analiza schimbărilor topografice determinate de procesele geomorfologice.

Referințe bibliografice

  1. Abermann J, Lambrecht A, Fischer A, Kuhn M (2009) Quantifying changes and trends in glacier area and volume in the AustrianÜtztal Alps (1969–1997–2006). The Cryosphere 3: 205.
  2. Ahnert F (1970) Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins. American Journal of Science 268: 243–263.
  3. Allen TR (1998) Topographic context of glaciers and perennial snowfields, Glacier National Park, Montana. Geomorphology 21: 207–216.
  4. Anders NS, Seijmonsbergen AC, Bouten W (2011) Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sensing of Environment 115: 2976–2985.
  5. Bagnold RA (1960) Sediment discharge and stream power—a preliminary announcement. Circular Reston, Virginia: US Geological Survey 421.
  6. Baltsavias EP, Favey E, Bauder A, Bosch H, Pateraki M (2001) Digital surface modelling by airborne laser scanning and digital photogrammetry for glacier monitoring. The Photogrammetric Record 17: 243–273.
  7. Benn DI, Lehmkuhl F (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65–66: 15–29.
  8. Bennett GL, Molnar P, Eisenbeiss H, Mcardell BW (2012) Erosional power in the Swiss Alps: characterization of slope failure in the Illgraben. Earth Surface Processes and Landforms 37: 1627–1640.
  9. Bennett GL, Molnar P, Mcardell BW, Schlunegger F, Burlando P (2013) Patterns and controls of sediment production, transfer and yield in the Illgraben. Geomorphology188: 68–82.
  10. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un mode`le a` base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin 24: 43–69.
  11. Bishop MP (2013) Remote sensing and GIScience in geomorphology: introduction and overview A2. In: Shroder JF (ed.) Treatise on geomorphology. San Diego: Academic Press.
  12. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing 65: 2–16.
  13. Blaschke T, Strobl J (2001) What’s wrong with pixels? Some recent developments interfacing remote sensing and GIS. Image Rochester NY 6: 12–17.
  14. Böhner J, Antonić O (2009) Land-surface parameters specific to topo-climatology. In: Tomislav H and Hannes IR (eds.) Developments in soil science. Amsterdam: Elsevier. Chapter 8.
  15. Borselli L, Cassi P, Torri D (2008) Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena 75: 268–277.
  16. Bremer M, Sass O (2012) Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 138: 49–60.
  17. Brocklehurst SH, Whipple KX (2004) Hypsometry of glaciated landscapes. Earth Surface Processes and Landforms 29: 907–926.
  18. Burbank DW, Anderson RS (2011) Tectonic geomorphology. Hoboken, NJ: John Wiley & Sons, Ltd.
  19. Campbell D, Church M (2003) Reconnaissance sediment budgets for Lynn Valley, British Columbia: Holocene and contemporary time scales. Canadian Journal of Earth Sciences 40: 701–713.
  20. Carrara A (1983) Multivariate models for landslide hazard evaluation. Journal of the International Association for Mathematical Geology 15: 403–426.
  21. Carrara A, Guzzetti F (1995) Geographical information systems in assessing natural hazards. Dordrecht: Springer.
  22. Cavalli M, Trevisani S, Comiti F, Marchi L (2013) Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31–41.
  23. Chairat S and Delleur JW (1993) Effects of the topographic index distribution on predicted runoff using grass. Water Resources Bulletin 29: 1029–1034.
  24. Champagnac JD, Molnar P, Anderson RS, Sue C, Delacou B (2007) Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35: 195–198.
  25. Chen A, Darbon J, and Morel J-M (2014) Landscape evolution models: a review of their fundamental equations. Geomorphology 219: 68–86.
  26. Costa-Cabral MC, Burges SJ (1994) Digital Elevation Model Networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research 30: 1681–1692.
  27. Coulthard TJ (2001) Landscape evolution models: a software review. Hydrological Processes 15: 165–173.
  28. Curry AM (1999) Paraglacial modification of slope form. Earth Surface Processes and Landforms 24: 1213–1228.
  29. Dadson SJ, Church M (2005) Postglacial topographic evolution of glaciated valleys: a stochastic landscape evolution model. Earth Surface Processes and Landforms 30: 1387–1403.
  30. Deroo APJ, Hazelhoff L, Burrough PA (1989) Soil-erosion modeling using answers and geographical information-systems. Earth Surface Processes and Landforms 14: 517–532.
  31. Dikau R (1989) The application of a digital relief model to landform analysis in geomorphology. In: Raper JF (ed.) Three dimensional applications in geographical information systems, London: Taylor & Francis.
  32. Dikau R (1996) Geomorphologische Reliefklassifikation und -analyse. Heidelberger Geographische Arbeiten 104: 15–36.
  33. Dikau R, Jäger S (1995) Landslide hazard modelling in New Mexico and Germany. In: Mcgregor D and Thompson D (eds.) Geomorphology and land management in a changing environment, Chichester: John Wiley.
  34. Dikau, R., Brabb, E. E. Mark, R. M. (1991). Landform classification of New Mexico by computer. Open-File Report.—ed.
  35. D’Oleire-Oltmanns S, Eisank C, Dragut L, Blaschke T (2013) An object-based workflow to extract landforms at multiple scales from two distinct data types. Geoscience and Remote Sensing Letters, IEEE 10: 947–951.
  36. Drăguț L, Blaschke T (2006) Automated classification of landform elements using object-based image analysis. Geomorphology 81: 330–344.
  37. Eash DA (1994) A geographic information-system procedure to quantify drainage-basin characteristics. Water Resources Bulletin 30: 1–8.
  38. Egholm DL, Pedersen VK, Knudsen MF, Larsen NK (2012) Coupling the flow of ice, water, and sediment in a glacial landscape evolution model. Geomorphology 141–142: 47–66.
  39. Eisank C, Smith M, Hillier J (2014) Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models. Geomorphology 214: 452–464.
  40. Erskine RH, Green TR, Ramirez JA, Macdonald LH (2006) Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research 42: 1–9.
  41. Evans IS (1972) General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley RJ (ed.) Spatial analysis in geomorphology. London: Methuen.
  42. Evans IS (2012) Geomorphometry and landform mapping: what is a landform? Geomorphology 137: 94–106.
  43. Fairfield J, Leymarie P (1991) Drainage networks from grid digital elevation models. Water Resources Research 27: 709–717.
  44. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Reviews of Geophysics 45:RG2004.
  45. Fischer L, Eisenbeiss H, Kääb A, Huggel C, Haeberli W (2011) Monitoring topographic changes in a periglacial high-mountain face using high-resolution DTMs, Monte Rosa East Face, Italian Alps. Permafrost and Periglacial Processes 22: 140–152.
  46. Fischer A, Seiser B, Stocker Waldhuber M, Mitterer C, Abermann J (2015) Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based highresolution glacier inventory in Austria. The Cryosphere 9: 753–766.
  47. Flint JJ (1974) Stream gradient as a function of order, magnitude, and discharge. Water Resources Research 10: 969–973.
  48. Freeman TG (1991) Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences 17: 413–422.
  49. Frey H, Machguth H, Huss M, Huggel C, Bajracharya S, Bolch T, Kulkarni A, Linsbauer A, Salzmann N, Stoffel M (2013) Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods. The Cryosphere Discuss 7: 4813–4854.
  50. Gay A, Cerdan O, Mardhel V, Desmet M (2016) Application of an index of sediment connectivity in a lowland area. Journal of Soils and Sediments 16: 280–293.
  51. Gesch D, Oimoen M, Zhang Z, Meyer D, Danielson J (2012) Validation of the Aster Global Digital Elevation Model Version 2 over the conterminous United States. In: Proceeding of the XXII ISPRS Congress, pp. 281–286, Melbourne: International Society for Photogrammetry and Remote Sensing.
  52. Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology 78: 11–27.
  53. Götz J, Otto JC, Schrott L (2013) Postglacial sediment storage and rockwall retreat in a semi-closed inner-alpine
  54. sedimentary basin (Gradenmoos, Hohe Tauern, Austria). Geografia Fisica e Dinamica Quaternaria 36: 63–80.

  55. Goudie AS (ed.) (1990) Geomorphological techniques. London: Unwin Hyman.
  56. Gregory KJ, Lewin J (2014) The basics of geomorphology: key concepts. London: Sage.
  57. Grieve SWD, Mudd SM, Hurst MD, Milodowski DT (2016) A nondimensional framework for exploring the relief structure of landscapes. Earth Surface Dynamics 4: 309–325.
  58. Grohmann CH, Smith MJ, Riccomini C (2011) Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. Geoscience and Remote Sensing, IEEE Transactions on 49: 1200–1213.
  59. Gross G, Kerschner H, Patzelt G (1977) Methodische Untersuchungen über die Schneegrenze in alpinen Gletschergebieten. Zeitschrift für Gletscherkunde und Glazialgeologie 12: 223–251.
  60. Gruber U, Bartelt P (2007) Snow avalanche hazard modelling of large areas using shallow water numerical methods and GIS. Environmental Modelling & Software 22: 1472–1481.
  61. Gruber FE, Mergili M (2013) Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS. Natural Hazards and Earth System Sciences 13: 2779–2796.
  62. Gruber S, Peckham S (2009) Land-surface parameters and objects in hydrology. In: Hengl T and Reuter HI (eds.) Amsterdam: Elsevier. Chapter 7.
  63. Gustavsson M, Kolstrup E, Seijmonsbergen AC (2006) A new symbol-and-GIS based detailed geomorphological mapping system: renewal of a scientific discipline for understanding landscape development. Geomorphology 77: 90–111.
  64. Gustavsson M, Seijmonsbergen AC, Kolstrup E (2008) Structure and contents of a new geomorphological GIS database linked to a geomorphological map—with an example from Liden, central Sweden. Geomorphology 95: 335–349.
  65. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31: 181–216.
  66. Hack JT (1957) Studies of longitudinal stream profiles in Virginia and Maryland. Shorter Contributions to General Geology: 45–97.
  67. Hack JT (1973) Stream-profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey 1: 421–429.
  68. Haeberli W, Hülzle M (1995) Application of inventory data for estimating characteristics of and regional climate effects on mountain glaciers: a pilot study with the European Alps. Annals of Glaciology 21: 206–212.
  69. Hara K, Zhao Y, Harada I, Tomita M, Park J, Jung E, Kamagata N, Hirabuki Y (2015) Multi-scale monitoring of landscape change after the 2011 tsunami. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives XL-7/W3: 805–809.
  70. Harbor J, Wheeler DA (1992) On the mathematical description of glaciated valley cross section. Earth Surface Processes and Landforms 17: 477–485.
  71. Harvey AM (2001) Coupling between hillslopes and channels in upland fluvial systems: implications for landscape sensitivity, illustrated from the Howgill Fells, northwest England. Catena 42: 225–250.
  72. Heckmann T, Schwanghart W (2013) Geomorphic coupling and sediment connectivity in an alpine catchment—exploring sediment cascades using graph theory. Geomorphology 182: 89–103.
  73. Hengl T, Reuter HI (eds.) (2009) Geomorphometry—concepts, software, applications, Oxford: Elsevier.
  74. Hickey R, Smith A, and Jankowski P (1994) Slope length calculations from a DEM within ARC/INFO grid. Computers, Environment and Urban Systems 18: 365–380.
  75. Hinderer M (2001) Late Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta 14: 231–263.
  76. Funk M, Hoelzle M (1992) A model of potential direct solar radiation for investigating occurrences of mountain permafrost. Permafrost and Periglacial Processes 3(2): 139–142.
  77. Hoffmann T, Schrott L (2002) Modelling sediment thickness and rockwall retreat in an Alpine valley using 2D-seismic refraction (Reintal, Bavarian Alps). Zeitschrift für Geomorphologie, Supplement Band 127: 153–173.
  78. Horton RE (1932) Drainage–basin characteristics. EOS, Transactions American Geophysical Union 13: 350–361.
  79. Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin 56: 275–370.
  80. Huabin W, Gangjun L, Weiya X, Gonghui W (2005) GIS-based landslide hazard assessment: an overview. Progress in Physical Geography 29: 548–567.
  81. Humlum O (1998) The climatic significance of rock glaciers. Permafrost and Periglacial Processes 9: 375–395.
  82. Huss M, Farinotti D (2012) Distributed ice thickness and volume of all glaciers around the globe. Journal of Geophysical Research: Earth Surface 117: F04010.
  83. Jaboyedoff M, Derron MH (2005a) A new method to estimate the infilling of alluvial sediment of glacial valleys using a sloping local base level. Geografia Fisica e Dinamica Quaternaria 28: 37–46.
  84. Jaboyedoff M, Derron MH (2005b) A new method to estimate the infilling of alluvial sediment of glacial valleys using a sloping local base level. Geografia Fisica e Dinamica Quaternaria 28: 37–46.
  85. Jäger S (1997) Fallstudien zur Bewertung von Massenbewegungen als geomorphologische Naturgefahr. Heidelberg: Selbstverlag des Geographischen Instituts der Universität.
  86. James LA (1996) Polynomial and power functions for glacial valley cross-section morphology. Earth Surface Processes and Landforms 21: 413–432.
  87. Jenson SK, Domingue JO (1988) Extracting topographic structure from digital elevation data for geographical information system analysis. Photogrammetric Engineering and Remote Sensing 54: 1593–1600.
  88. Kääb A, Winsvold S, Altena B, Nuth C, Nagler T, Wuite J (2016) Glacier remote sensing using sentinel-2. Part I: radiometric and geometric performance, and application to ice velocity. Remote Sensing 8: 598.
  89. Keller F (1992) Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. Permafrost and Periglacial Processes 3: 133–138.
  90. Keutterling A, Thomas A (2006) Monitoring glacier elevation and volume changes with digital photogrammetry and GIS at Gepatschferner glacier, Austria. International Journal of Remote Sensing 27: 4371–4380.
  91. Kirkby MJ (1987) Modelling some influences of soil erosion, landslides and valley gradient on drainage density and hollow development. Catena Supplement 10: 1–14.
  92. Koethe R, Lehmeier F (1993) SARA—Ein Programmsystem zur Automatischen Relief-Analyse. Zeitschrift für Angewandte Geographie 4: 11–21.
  93. Kruse S (2013) 3.5 Near-surface geophysics in geomorphology A2. In: Shroder JF (ed.) Treatise on geomorphology, San Diego: Academic Press.
  94. Kugler H (1975). Das Georelief und seine kartographische Modellierung. Dissertation, Martin-Luther-Universität Halle.
  95. Lan H, Derek Martin C, Lim CH (2007) RockFall analyst: a GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers & Geosciences 33: 262–279.
  96. Lane SN, James TD, Crowell MD (2000) Application of digital photogrammetry to complex topography for geomorphological research. The Photogrammetric Record 16: 793–821.
  97. Lane SN, Bakker M, Gabbud C, Micheletti N, Saugy JN (2017) Sediment export, transient landscape response and catchment-scale connectivity following rapid climate warming and Alpine glacier recession. Geomorphology 277: 210–227.
  98. Lautensach H (1959) Carl Troll—Ein Forscherleben. Erdkunde 13: 245–258.
  99. Legleiter CJ, Fonstad MA (2012) An introduction to the physical basis for deriving river information by optical remote sensing. Fluvial remote sensing for science and management. Hoboken, NJ: John Wiley & Sons, Ltd.
  100. Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. Eos, Transactions American Geophysical Union 89: 93–94.
  101. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. San Francisco: W.H. Freeman and Co.
  102. Li X, Damen MCJ (2010) Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. Journal of Marine Systems 82 (Suppl.): S54–S61.
  103. Liu BY, Nearing MA, Shi PJ, Jia ZW (2000) Slope length effects on soil loss for steep slopes. Soil Science Society of America Journal 64: 1759–1763.
  104. Macmillan RA, Pettapiece WW, Nolan SC, Goddard TW (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets and Systems 113: 81–109.
  105. Marthews TR, Dadson SJ, Lehner B, Abele S, Gedney N (2015) High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrology and Earth System Sciences 19: 91–104.
  106. Messenzehl K, Hoffmann T, Dikau R (2014) Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park—linking geomorphic field mapping with geomorphometric modelling. Geomorphology 221: 215–229.
  107. Mey J, Scherler D, Wickert AD, Egholm DL, Tesauro M, Schildgen TF, Strecker MR (2016) Glacial isostatic uplift of the European Alps. Nature Communications 7: 13382.
  108. Micheletti N, Lambiel C, Lane SN (2015) Investigating decadal-scale geomorphic dynamics in an alpine mountain setting. Journal of Geophysical Research: Earth Surface 120: 2155–2175.
  109. Minár J, Evans IS (2008) Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology 95: 236–259.
  110. Minar J, Mentlik P, Jedlicka K, Barka I (2005) Geomorphological information system: idea and options for practical implementation. Geograficky Casopis 57: 247–264.
  111. Montgomery DR, Foufoula-Georgiou E (1993) Channel network source representation using digital elevation models. Water Recources Research 29: 3925–3934.
  112. Moore ID, Burch GJ (1986) Physical basis of the length-slope factor in the universal soil loss Equation1. Soil Science Society of America Journal 50: 1294–1298.
  113. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes 5: 3–30.
  114. Napieralski J, Harbor J, Li Y (2007) Glacial geomorphology and geographic information systems. Earth-Science Reviews 85: 1–22.
  115. Oguchi T, (2006) GIS applications in Geomorphology - a review, Regional Conference on Geomorphology, Tropical and Subtropical Geomorphology: processes, methods and techniques, Brazil, Goiania-GO, September 6-10, 2006.
  116. Oguchi T, Wasklewicz TA (2011) Geographic information systems in geomorphology. In: Gregory KJ and Goudie AS (eds.) The SAGE handbook of geomorphology, London: SAGE.
  117. Olaya V (2009) Basic land-surface parameters. In: Tomislav H and Hannes IR (eds.) Developments in soil science. Amsterdam: Elsevier. Chapter 6.
  118. Olyphant GA (1977) Topoclimate and the Depth of Cirque Erosion. Geografiska Annaler. Series A. Physical Geography 59: 209–213.
  119. Otto J-C, Dikau R (2004) Geomorphologic system analysis of a high mountain valley in the Swiss Alps. Zeitschrift für Geomorphologie, NF 48: 323–341.
  120. Otto JC, Smith M (2013) Section 2.6 Geomorphological mapping. In: Clarke LE (ed.) Geomorphological techniques (online edition). London: British Society for Geomorphology.
  121. Otto J-C, Schrott L, Jaboyedoff M, Dikau R (2009) Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland). Earth Surface Processes and Landforms 34: 1726–1742.
  122. Otto JC, Gustavsson M, Geilhausen M (2011) Cartography: design, symbolisation and visualisation of geomorphological maps. In: Smith MJ, Paron P, and Griffiths J (eds.) Geomorphological mapping: methods and applications, London: Elsevier.
  123. Otto J-C, Keuschnig M, Götz J, Marbach M, Schrott L (2012) Detection of mountain permafrost by combining high resolution surface and subsurface information—an example from the Glatzbach catchment, Austrian Alps. Geografiska Annaler: Series A, Physical Geography 94: 43–57.
  124. Otto, Jan-Christoph & Prasicek, Günther & Blöthe, Jan & Schrott, Lothar. (2017). GIS Applications in Geomorphology. In: Shroder JF (ed.) Treatise on geomorphology, San Diego: Academic Press Elsevier.
  125. Paul F, Bolch T, Kääb A, Nagler T, Nuth C, Scharrer K, Shepherd A, Strozzi T, Ticconi F, Bhambri R, Berthier E, Bevan S, Gourmelen N, Heid T, Jeong S, Kunz M, Lauknes TR, Luckman A, Merryman Boncori JP, Moholdt G, Muir A, Neelmeijer J, Rankl M, Vanlooy J, Van Niel T (2015) The glaciers climate change initiative: methods for creating glacier area, elevation change and velocity products. Remote Sensing of Environment 162: 408–426.
  126. Penck A (1894) Morphologie der Erdoberfläche, 2nd edn Stuttgart: Engelhorn.
  127. Pike R, Dikau R (1995) Advances in Geomorphometry. Proceedings of the Walter F. Wood Memorial Symposium. Zeitschrift für Geomorphologie/Supplement, vol. 101, 238 p.
  128. Pike RJ, Wilson SE (1971) Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geological Society of America Bulletin 82: 1079–1084.
  129. Porter SC (1975) Equilibrium-line altitudes of late Quaternary glaciers in the Southern Alps, New Zealand. Quaternary Research 5: 27–47.
  130. Prasicek G, Otto J-C, Montgomery DR, Schrott L (2014) Multi-scale curvature for automated identification of glaciated mountain landscapes. Geomorphology 209: 53–65.
  131. Prasicek G, Larsen IJ, Montgomery DR (2015) Tectonic control on the persistence of glacially sculpted topography. Nature Communications 6:8028.
  132. Rabatel A, Deline P, Jaillet S, Ravanel L (2008) Rock falls in high-alpine rock walls quantified by terrestrial lidar measurements: a case study in the Mont Blanc area. Geophysical Research Letters 35(10): L10502.
  133. Racoviteanu A, Williams M, Barry R (2008) Optical remote sensing of glacier characteristics: a review with focus on the Himalaya. Sensors 8: 3355.
  134. Riseborough D, Shiklomanov N, Etzelmüller B, Gruber S, Marchenko S (2008) Recent advances in permafrost modelling. Permafrost and Periglacial Processes 19: 137–156.
  135. Rosser NJ, Petley DN, Lim M, Dunning SA, Allison RJ (2005) Terrestrial laser scanning for monitoring the process of hard rock coastal cliff erosion. Quarterly Journal of Engineering Geology and Hydrogeology 38: 363–375.
  136. Rowland JC, Shelef E, Pope PA, Muss J, Gangodagamage C, Brumby SP, Wilson CJ (2016) A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sensing of Environment 184: 212–228.
  137. Salcher BC, Kober F, Kissling E, Willett SD (2014) Glacial impact on short-wavelength topography and long-lasting effects on the denudation of a deglaciated mountain range. Global and Planetary Change 115: 59–70.
  138. Sass O (2007) Bedrock detection and talus thickness assessment in the European Alps using geophysical methods. Journal of Applied Geophysics 3: 254–269.
  139. Sattler K, Anderson B, Mackintosh A, Norton K, DE Ro´iste M (2016) Estimating permafrost distribution in the maritime Southern Alps, New Zealand, based on climatic conditions at rock glacier sites. Frontiers in Earth Science 4.
  140. Scaioni M, Longoni L, Melillo V, Papini M (2014) Remote sensing for landslide investigations: an overview of recent achievements and perspectives. Remote Sensing 6: 9600.
  141. Schmidt J, Hewitt A (2004) Fuzzy land element classification from DTMs based on geometry and terrain position. Geoderma 121: 243–256.
  142. Schneevoigt NJ, Van der Linden S, Thamm H-P, Schrott L (2008) Detecting Alpine landforms from remotely sensed imagery. A pilot study in the Bavarian Alps. Geomorphology 93: 104–119.
  143. Schoeneich P (1993) Comparaison des syste´mes de le´gendes francais, allemand et suisse principes de la le´gende IGUL. Travaux et Recherches 9: 15–24.
  144. Schrott L, Adams T (2002) Quantifying sediment storage and Holocene denudation in an Alpine basin, Dolomites, Italy. Zeitschrift für Geomorphologie N.F. 128(Suppl. Bd): 129–145.
  145. Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and limitations exemplified by case studies. Geomorphology 93: 55–73.
  146. Schrott L, Hufschmidt G, Hankammer M, Hoffmann T, Dikau R (2003a) Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 55: 45–63.
  147. Schrott L, Hufschmidt G, Hankammer M, Hofmann T, Dikau R (2003b) Spatial distribution of sediment storage types and quantification of valley fill deposits in an alpine basin, Reintal, Bavarian Alps, Germany. Geomorphology 55: 45–63.
  148. Schrott L, Otto JC, Keller F (2013) Modelling alpine permafrost distribution in the Hohe Tauern region, Austria. Austrian Journal of Earth Science 105: 169–183.
  149. Seibert J, Mcglynn B (2007) A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resources Research 43: 1–8.
  150. Shary PA, Sharaya LS, Mitusov AV (2005) The problem of scale-specific and scale-free approaches in geomorphometry. Geografia Fisica e Dinamica Quaternaria 28: 81–101.
  151. Shroder JF, Scheppy RA, Bishop MP (1999) Denudation of small alpine basins, Nanga Parbat Himalaya, Pakistan. Arctic Antarctic and Alpine Research 31: 121–127.
  152. Small EE, Anderson RS (1998) Pleistocene relief production in Laramide mountain ranges, western United States. Geology 26: 123–126.
  153. Smith MJ (2011) Digital mapping: visualisation, interpretation and quantification of landforms. In: Smith MJ, Paron P, and Griffiths J (eds.) Geomorphological mapping: methods and applications. London: Elsevier.
  154. Smith MW (2014) Roughness in the Earth Sciences. Earth-Science Reviews 136: 202–225.
  155. Smith MJ, Wise SM (2007) Problems of bias in mapping linear landforms from satellite imagery. International Journal of Applied Earth Observation and Geoinformation 9: 65–78.
  156. Smith MJ, Rose J, Booth S (2006) Geomorphological mapping of glacial landforms from remotely sensed data: an evaluation of the principal data sources and an assessment of their quality. Geomorphology 76: 148–165.
  157. Smith MJ, Hilier J, Otto JC, Geilhausen M (2013) Geovisualisation. In: Shroder JF (ed.) Treatise on geomorphology, San Diego: Academic Press Elsevier.
  158. Snavely N, Seitz SM, Szeliski R (2008) Modeling the world from Internet photo collections. International Journal of Computer Vision 80: 189–210.
  159. Sternai P, Herman F, Fox MR, Castelltort S (2011) Hypsometric analysis to identify spatially variable glacial erosion. Journal of Geophysical Research 116: F03001.
  160. Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 63: 1117–1142.
  161. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38: 913–920.
  162. Stumpf A, Malet JP, Delacourt C (2017) Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides. Remote Sensing of Environment 189: 40–55.
  163. Svensson H (1959) Is the cross-section of a glacial valley a parabola? Journal of Glaciology 3: 362–363.

  164. Tarboton DG, Bras RL, Rodriguez-Iturbe I (1991) On the extraction of channel networks from digital elevation data. Hydrological Processes 5: 81–100.
  165. Theler D, Reynard E, Bardou E (2008) Assessing sediment dynamics from geomorphological maps: Bruchi torrential system, Swiss Alps. Journal of Maps 4: 277–289.
  166. Tomlinson RF (1967) An introduction to the geo-information system of the Canada Land Inventory. ARDA. Department of Forestry and Rural Development, Ottawa, Canada.
  167. Tucker GE, Bras RL (1998) Hillslope processes, drainage density, and landscape morphology. Water Resources Research 34: 2751–2764.
  168. Tucker GE, Hancock GR (2010) Modelling landscape evolution. Earth Surface Processes and Landforms 35: 28–50.
  169. Tucker GE, Whipple KX (2002) Topographic outcomes predicted by stream erosion models: sensitivity analysis and intermodel comparison. Journal of Geophysical Research: Solid Earth 107. ETG 1-1–ETG 1-16.
  170. Tunnicliffe J, Church M, Clague JJ, Feathers JK (2012) Postglacial sediment budget of Chilliwack Valley, British Columbia. Earth Surface Processes and Landforms 37: 1243–1262.
  171. Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Engineering Geology 102: 112–131.
  172. Vanwesten CJ, Terlien MTJ (1996) An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms 21: 853–868.
  173. Warrick JA, Ritchie AC, Adelman G, Adelman K, Limber PW (2017) New techniques to measure Cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry. Journal of Coastal Research 33: 39–55.
  174. Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179: 300–314.
  175. Whipple KX (2004) Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences 32: 151–185.
  176. Whipple KX, Tucker GE (1999) Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth 104: 17661–17674.
  177. Whipple KX, Dibiase RA, Crosby BT (2013) Bedrock rivers. In: Shroder JF and Wohl E (eds.) Treatise on geomorphology. San Diego: Academic Press.
  178. Wichmann V, Becht M (2006) Rockfall modelling: methods and model application in an Alpine basin. Güttingen: Goltze.
  179. Wilford DJ, Sakals ME, Innes JL, Sidle RC, Bergerud WA (2004) Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 1: 61–66.
  180. Wilson JP, Bishop MP (2013) 3.7 Geomorphometry A2. In: Shroder JF (ed.) Treatise on geomorphology, San Diego: Academic Press.
  181. Wilson JP, Gallant JC (eds.) (2000) Terrain analysis: principles and applications, New York: Wiley.
  182. Wulder MA, Coops NC (2014) Make Earth observations open access. Nature 513: 30–31.
  183. Zink M, Fiedler H, Hajnsek I, Krieger G, Moreira A, Werner M (2006) The TanDEM-X mission concept. IEEE International Symposium on Geoscience and Remote Sensing 1938–1941.
  184. Zink M, Bartusch M, Miller D (2011) TanDEM-X mission status. IEEE International Geoscience and Remote Sensing Symposium 2011: 2290–2293.

Descărcare date proiecte

Text capitol
Proiect 1
Proiect 2
Proiect 3
Proiect 4
Proiect 5
Proiect 6
Proiect 7
Proiect 8
Proiect 9
Proiect 10

English
Tags: