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Abstract 

Observations of surface deformation within 1-2km of a surface rupture contain invaluable 

information about the coseismic behavior of the shallow crust. We investigate the oblique 

strike-slip 2016 M7 Kumamoto, Japan, earthquake which ruptured the Futagawa-Hinagu 

Fault. We solve for variable fault slip in an inversion of differential lidar topography, 

satellite optical image correlation, and InSAR-derived surface displacements. The near-fault 

differential lidar pose several challenges. The model fault geometry must follow the surface 

trace at the sub-kilometer scale. Integration of displacement datasets with different 

sensitivities to the 3D deformation field and varying spatial distribution permits additional 

complexity in the inferred slip but also introduces ambiguity that requires careful selection of 

the regularization. We infer a Mw7.09−0.05
+0.03 earthquake. The maximum slip of 6.9m occurred 

at 4.5km depth, suggesting an on-fault slip deficit in the upper several kilometers of the crust 

that likely reflects distributed and inelastic deformation within the shallow fault zone. 

 

Plain Language Summary 

Coseismic slip inversions quantify fault slip over a fault surface and serve as critical input 

into research on rupture propagation, earthquake triggering, and seismic hazard. However, 

coseismic slip distributions are rarely constrained by observations of surface displacement 

immediately adjacent to the fault rupture. This limits the quality of slip models within the 

shallowest crust. We solve for the slip field of the 2016 M7 Kumamoto, Japan, earthquake 

throughout the seismogenic crust using near- and far-field observations from differential 

lidar topography, satellite optical image correlation, and InSAR surface displacements. The 

near-field differential lidar topography is critical for measuring shallow fault slip. We infer a 

Mw7.09−0.05
+0.03 earthquake and a maximum slip of 6.9 m at 4.5 km depth. This represents a 

shallow fault slip deficit where slip is greater at depth than at the surface. The missing 

shallow along-fault slip is accommodated as off-fault and inelastic deformation, presumably 

along secondary faults and folds in the shallow crust. Future earthquakes are also likely to 

be measured with different surface displacement datatypes. Researchers will have new 

opportunity to learn about the behavior of the shallow fault zone but will also be presented 

with technical challenges such as those discussed here.  

 

1. Introduction 
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2. Tectonic setting and the Kumamoto earthquake 

3. Data and Methods 

 

3.1 Data: 

3.1.1 Differential topography:
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3.1.2 Optical correlation:  

 

3.1.3 InSAR: 

3.1.4 Downsampling:

3.1.5 Pre- and post-seismic displacements: 

≥

 

3.2 Fault geometry
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3.3 Slip inversion and regularization 

𝐆m = d  (1) 
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The generalized inverse is, 
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𝒎 = 𝑮−𝒈𝑑. (4) 

3.4 Dataset resolution for variable fault slip   

R i j

i j  

𝑅𝒑𝒂𝒕𝒄𝒉𝒊,𝒅𝒂𝒕𝒂𝒔𝒆𝒕𝒋 = |𝑮−𝒈(𝒑𝒂𝒕𝒄𝒉𝒊, 𝒅𝒋)|. (5) 
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(6) 

4. Results and discussion  

4.1 Joint earthquake source inversion 
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4.2 Data constraints on fault slip as a function of depth 

4.3 Regularization 

4.4 Shallow fault slip behavior 
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5. Conclusions 
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