LP 02 - Profilul geomorfologic și harta hipsometrică

prep. drd. Mihai NICULIŢĂ

12noiembrie2012

Departamentul de Geografie Facultatea de Geografie și Geologie Universitatea Alexandru Ioan Cuza, Iași, Romania

Acest material se află sub licență Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0), reprezentând responsabilitatea unică a autorului și nu reprezintă neapărat poziția oficială a UAIC.

Lucrarea practică își propune descrierea modului de întocmire a profilului geomorfologic și a hărții hipsometrice cu umbrire.

1 Profilul geomorfologic

1.1 Profilul topografic

Profilul topografic este o secțiune reprezentată bidimensional a reliefului scoarței terestre. El este o construcție grafică care se bazează pe reprezentarea altitudinii ca funcție a distanței grafice pe două axe de coordonate carteziene x (abscisa) și y (ordonata).

Tipurile de profil topografic Funcție de direcția pe care se face secționarea reliefului, profilele pot fi drepte sau frânte. Profilele drepte reflectă corect distanțele grafice, dar nu sunt foarte reprezentative totdeauna pentru formele de relief, pe când profilele frânte exagerează distanțele grafice, dar reflectă mai bine forma reliefului.

Funcție de direcția de secționare a dezvoltării formei de relief, profilele pot fi transversale sau longitudinale. Dacă direcția de profil intersectează o formă de relief perpendicular pe direcția de dezvoltare, atunci profilul este numit transversal (profil transversal printr-o vale, deal, culme, munte, etc). Dacă direcția de profil intersectează o formă de relief de-a lungul direcției sale de dezvoltare, atunci profilul este longitudinal (profil longitudinal al unei văi, râu, culmi, deal, munte).

Scările profilului topografic Profilul topografic are două scări, care pot fi egale sau inegale. Ele sunt date de cele două axe de coordonate. Scara distanțelor din teren (orizontală), pe axa ox, se obține prin transformarea distanțelor grafice la scara hărții în distanțe din teren. Scara înălțimilor (verticală), pe axa oy, reflectă distribuția altitudinală a profilului. Dacă alegem ca cele două scări să fie egale ca valoare (adică 1 m pe scara distanțelor să fie egal cu 1 m de pe scara înălțimilor), din cauza dezvoltării profilului mai mult pe orizontală decât pe verticală, variațiile altitudinale ale reliefului nu sunt reprezentate fidel. De aceea scara verticală se exagerează față de cea orizontală la diferite proporții (x2, x5, x10, x100), funcție de zona unde se face profilul (munte, deal, podiș, câmpie). Pot exista și cazuri, pentru relieful montan accidentat când scara verticală se micșorează. Limita maximă a scării verticale este dată de maximul de altitudine, plus încă un interval major. Limita minimă trebuie să fie mai mică decât cea mai mică altitudine a liniei de profil, mai ales atunci când se intenționează reprezentarea geologiei, ca în cazul profilelor geomorfologice.

Întocmirea profilului topografic Profilul topografic reprezintă o diagramă de tip linie, reprezentând o altitudine pentru fiecare distanță, de-a lungul liniei de profil. Pentru a obține o astfel de diagramă este nevoie de două șiruri corespondente, conținând altitudinea aferentă fiecărui pixel și distanța la care se află acesta față de punctul de start al liniei de profil.

Elemente de coținut ale reprezentării grafice ale profilului topografic Profilul trebuie să aibă TITLU în care se specifică **tipul de profil** transversal/longitudinal, liniar/drept/frânt/sinuos și **toponimul zonei** unde a fost efectuat profilul.

Notarea **toponimelor** şi/sau cotelor altitudinale se face, dacă acestea se ştiu sau există pe harta topografică aferentă (pentru România cele mai veridice toponime sunt reprezentate pe aşa numitele planuri directoare de tragere http://earth.unibuc.ro/articole/eHarta-work-planurile-de-tr hărți topografice la scara 1:20 000, proiecție conformă conică Lambert, varianta Cholensky, reprezentând terenul aferent anilor 1890-1920 și toponimele perioadei 1890-1950).

Orientarea liniei de profil trebuie indicată pe marginile profilului, funcție de punctele cardinale. Se mai poate efectua si o schiță a regiunii, orientată spre N pe care se desenează linia de profil, astfel încât direcția orientării liniei de profil este evidentă. Când linia de profil este frântă, schimbarea direcției de profil trebuie indicată printr-o linie verticală, și prin indicarea orientării segmentului, deasupra acesteia.

1.2 Profilul geomorfologic

Profilul geomorfologic este un profil topografic care conține și informații geologico-geomorfologice (date de geologie, structură, tipuri de formațiuni acoperitoare, procese geomorfologice, caracteristici geomorfometrice, formele de relief, vegetația sau modul de folosință al terenului, etc). Construcția profilului geomorfologic este identică construcției profilului topografic, cu adăugarea informațiilor geologico-geomorfologice Profilele geomorfologice pot fi simple, folosite pentru a înfățișa forma reliefului pe o direcție, sau pot fi compuse, mixte, complexe sau suprapuse, pentru a înfățișa aspecte ale reliefului pentru zone întinse. Cele mai importante aspecte geologicogeomorfologice care se exprimă pe profilele geomorfologice sunt:

- structura geologică, prin desenarea limitei stratelor geologice și exprimarea grosimii acestora;
- tipul petrologic de rocă al diferitelor corpuri geologice exprimat prin hașuri sau culori;
- tipul depozitelor acoperitoare: eluviu, deluviu, aluviu, coluviu, proluviu;
- linii tectonice sau structurale importante, cu efect în relief;
- formele de relief generalizate: versant, culme, interfluviu, albie;
- forme de relief specifice: dolină, terasă, ravenă;
- procese geomorfologice: alunecări, ravenare;
- panta sau tipul de curbură sectoarelor de profil;
- vegetația, modul de folosință.

Profilul geomorfologic transversal Profilul geomorfologic transversal este o construcție grafică care ne arată variația altitudinii pe direcție transversală față de formele de relief (culme, versant, albie), completată cu detalii privind structura geologică și constituția litologică, tipurile de depozite acoperitoare, formele de relief, etc.

Figura 1: Exemple de profile geomorfologice

Profilul geomorfologic longitudinal Profilul geomorfologic longitudinal este o construcție grafică care ne arată variația altitudinii de-a lungul unei forme de relief, fiind practicat în special pentru albiile de râu, completată de informații privind geologia sau evoluția geomorfologică a râului respectiv.Întocmirea profilului geomorfologic longitudinal se face la fel ca în cazul unui profil topografic pe o direcție sinuoasă.

Forma profilului geomorfologic longitudinal este caracterizată de o scădere continuă a altitudinii albiei de râu pe măsură ce crește lungimea acesteia. În general profilul longitudinal se prezintă ca o linie cu concavă, dar pot apărea mai multe sectoare ale acestuia, care fie sunt concave, fie convexe (Fig. 2.1). Variația este dată de relația inversă dintre altitudine și lungime. Astfel un raport 1:1 (1 m variație a altitudinii, 1 m variație a lungimii) creează linii drepte, cu o pantă de 45°. Dacă raportul devine supraunitar (altitudinea scade mai repede decât lungimea) panta liniei depăsește 45°. Dacă raportul devine subunitar (altitudinea scade mai încet decât lungimea), panta liniei scade sub 45°. O succesiune de raport 1:1 sau raport subunitar cu un raport supraunitar creează un segment concav al profilului, iar o succesiune de raport supraunitar cu raport subunitar creează un profil convex. Variabilele geomorfonetrice ale profilului longitudinal sunt variabile matematice care descriu cantitativ profilele geomorfologice longitudinale și care au semnificație în analiza geomorfologică.

Pentru realizarea comparațiilor între parametrii profilelor longitudinale ale râurilor Dumitriu [2007] propune aducerea la unitate a profilelor prin normalizare, pentru datele de pe ambele axe:

$$Altitudine normalizat\breve{a} = \frac{H_i - H_{min}}{H_{max}} \tag{1}$$

$$Lungime normalizat\breve{a} = \frac{L_i}{L_{max}}$$
(2)

unde i este fiecare individ al populației de altitudini, respectiv lungimi.

Coeficientul de concavitate se poate calcula după metoda lui Snow and R.L. [1987] ca raport al suprafețelor de deasupra liniei de profil și de sub linia de profil, măsurate pe grafic:

$$C_A = \frac{A_1}{A_2} \tag{3}$$

Se consideră că, cu cât coeficientul de concavitate al profilului longitudinal este mai mare, cu atât este mai mare vârsta râului care a creat acest profil.

Figura 2: Exemple de profile geomorfologice

Figura 3: Exemple de profile geomorfologice (1)

Figura 4: Trasarea direcției de profil topografic

Gradientul sau panta râului reprezintă variația altitudinii albiei râului (Δh) raportată la lungimea albiei (valoarea determinată grafic, necorectată funcție de pantă - D) pe care are loc această variație:

$$\beta = \frac{\Delta h}{D} \tag{4}$$

Pentru profilele longitudinale se poate calcula un gradient total, care însă indică o valoare medie, ce pe sectoare poate varia foarte mult.

2 Calculul în SAGA

Se deschide SAGA GIS. Fişierul *SRTM3_30m_stereo_"rând"_"coloană".sgrd* se încarcă în aplicația SAGA GIS (FILE/GRID/LOAD)^{SE}.

În fereastra WORKSPACE/MODULES este disponibilă în cadrul librăriei <u>Terrain Analysis</u> -<u>Profiles</u>, funcția <u>Profile [interactive]</u>. Prin dublu-click, se rulează funcția. La **Data Objects**, se alege la **Grids**, ca **Grid System** extinderea disponibilă (30; 1100x 1100y; coordx coordy), la >> **DEM**, 101. srtm3_30m_stereo_"rând"_"coloană", la **Values** se ignoră, la **Shapes**, ca << Profile points și << Profile line se alege create. După setarea parametrilor doriți se rulează funcția prin apăsarea Okay.

Semnalul sonor, bara albastră din partea dreaptă jos și mesajul din fereastra MESSAGES: <u>Interactive module execution has been started</u> arată că funcția a fost inițiată cu succes. În același timp este deschisă automat o hartă cu modelul numeric. Acest modul este interactiv, în sensul că necesită crearea interactivă a liniei de profil. Aceasta se face prin alegerea cursorului de tip Action, și desenarea liniei de profil cu ajutorul click stânga, prin inserarea nodurilor.

După desenarea direcției dorite, se acționează click dreapta, fapt care duce la crearea în WOR-KSPACE/DATA/TREE, sub Shapes a unui vector de tip Line numit 01. Profile [srtm3_30m_stereo_"rând"_"c și un vector de tip Point numit 01. Profile [srtm3_30m_stereo_"rând"_"coloană"], care vor fi salvate prin click dreapta **Save As...**, în E:/Geomorfologie/nume_prenume ca profil_punct.shp

Figura 5: Afișarea tabelului aferent fișierul de tip punct

și profil_linie.shp. Vectorul de tip linie conține linia de profil desenată, iar vectorul de tip punct conține punct aferente liniei desenate și introduse la fiecare intersecție a linie de profil cu pixelii gridului SRTM. Relaționată de vectorul de tip punct, există o bază de date (în WORKS-PACE/DATA/TREE click dreapta pe vectorul de tip punct și apoi se alege Attributes/Show) ce conține distanța fiecărui punct față de punct de pornire al profilului (atributul **Distance**) și altitudinea aferentă pe rasterul SRTM (atributul **Z**), ambele în metri.

In fereastra WORKSPACE/DATA/TREE, prin click dreapta pe vectorul de tip punct și apoi alegerea *Attributes/Diagram* se accesează opțiunile de creare a unei diagrame. Pentru crearea unui profil topografic, se alege *Lines* la **Display Type**, atributul *Distance* la **X Axis Values**, și atributul **Z** la **Attributes**.

Fereastra conținând profilul topografic se modifică pentru a obține o exagerare optimă (axa Y să fie aprox. 1/3 din axa X). Acest grafic se salvează în memoria RAM cu ajutorul tastei PrintScreen, și apoi se introduce în aplicația **Paint** (Ctrl+V), unde se decupează doar graficul, salvându-se apoi ca fișie .png. Se mai poate utiliza aplicația **XnView**, unde cu ajutorul funcției Edit/Import Clipboard se importă conținutul copiat, după care se taie (selecție de tip drag&drop și apoi se apasă butonul 💷) și se salvează graficul, ca fișier .png în $E:/Geomorfologie/nume_prenume.$

3 Harta hipsometrică

Hipsometria reprezintă măsurarea altitudinilor și adâncimilor (batimetrie) suprafeței terestre exprimate relativ la nivelul mării (Encyclopædia Britannica Online. 27 Feb. 2010, http: //www.britannica.com/EBchecked/topic/280167/hypsometry). Din punctul de vedere al topografilor și cartografilor, harta hipsometrică prezintă relieful prin convenții, cum ar fi curbele de nivel, hașurile, umbrirea, scara de culori [Duggal, 2004]. Practic, hipsometria este un strat tematic reprezentat pe hărțile generale geografice sau pe cele topografice, continuitatea altitudinii suprafeței terestre fiind redată fie prin curbe de nivel, fie prin culori, sau forma suprafeței terestre fiind înfățișată cu ajutorul hașurilor sau a umbririi. Geografii fizicieni sau geomorfologii

3						
	ID	Distance	stance Overla	x	Y	z
1	1	0.000000	0.000000	503608.951000	674825.038000	1406.160034
2	2	36.055513	36.224991	503628.951000	674795.038000	1402.660034
3	3	72.111026	72.380707	503648.951000	674765.038000	1405.349976
4	4	108.166538	108.436832	503668.951000	674735.038000	1405.560059
5	5	144.222051	144.493355	503688.951000	674705.038000	1405.829956
6	6	180.277564	180.628650	503708.951000	674675.038000	1403.430054
7	7	216.333077	216.694657	503728.951000	674645.038000	1402.560059
8	8	252.388589	252.750175	503748.951000	674615.038000	1402.579956
9	9	288.444102	289.160399	503768.951000	674585.038000	1397.510010
10	10	324.499615	325.251839	503788.951000	674555.038000	1399.119995
11	11	360.555128	361.567611	503808.951000	674525.038000	1403.459961
12	12	396.610640	398.093016	503828.951000	674495.038000	1397.619995
13	13	432.666153	434.148530	503848.951000	674465.038000	1397.609985
14	14	468.721666	470.208390	503868.951000	674435.038000	1397.050049
15	15	504.777179	507.454024	503888.951000	674405.038000	1387.709961
16	16	540.832691	544.401609	503908.951000	674375.038000	1379.640015
17	17	576.888204	581.639724	503928.951000	674345.038000	1370.329956
18	18	612.943717	619.754934	503948.951000	674315.038000	1357.969971
19	19	648.999230	659.583112	503968.951000	674285.038000	1341.050049
20	20	685.054742	700.994906	503988.951000	674255.038000	1320.680054
21	21	721.110255	740.514447	504008.951000	674225.038000	1304.500000
22	22	757.165768	782.835448	504028.951000	674195.038000	1282.339966
23	23	793.221281	824.717585	504048.951000	674165.038000	1261.030029
24	24	829.276793	864.626877	504068.951000	674135.038000	1243.920044
25	25	865.332306	906.667622	504088.951000	674105.038000	1222.300049
26	26	901.387819	948.337667	504108.951000	674075.038000	1201.410034
27	27	937.443332	988.398303	504128.951000	674045.038000	1183.949951
28	28	973.498844	1028.363503	504148.951000	674015.038000	1166.709961
20	20	1000 554257	1066 540720	E0/169 0E1000	C7200E 020000	1154 160024

Distanța de-a lungul direcției de profil

Altitudinea

Figura 6: Conținutul tabelului aferent fișierul de tip punct

Figura 7: Setările diagramei de creare a profilului topografic

8	SAG	Ā						
File	e M	Iodul	es Diagram W	/indow ?				
8	€	1	0					i 🗽 🔁 🔛
	01	. srt	m3_30m_ster	eo_18_8		_ [] :	×	
		01.	srtm3 30m s	tereo 18 8		- 1		
			488000	496000 504000	512000	520000 528	8000	
			01. Profile	[srtm3_30m_st	tereo 18 8]	·		1 .
8								
8	0008			ID	Distance	stance Overla	x –	
	-×	1	1	1	0.000000	0.000000	503608.95	
lĕ			2	2	36.055513	36.224991	503628.95	
8	8		3	3	72.111026	72.380707	503648.95	
	8		4	4	108.166538	108.436832	503668.95	
8			5	5	144.222051	144.493355	503688.95	
672	8		6	6	180.277564	180.628650	503708.95	
	672			/	216.333077	216.694657	503728.95	
8			8	8	252.388589	252./501/5	503748.95	
640	8		9	9	200.444102	289.160399	503768.9:	
Ē	5.		10	10	324,499013	323.231039	503909.05	
	Ē	5	12	11	396 610640	398.093016	503828.95	
			1 M Dia	agram [01. Prof	ile [srtm3_30	m stereo 18	8]]	
				1406 160 -				
				250 267			_	
				1212 572				
				1312.373				
				1203.700				
				1210.307				
				1172.193				
				1125.400				
				1078.607				
				005 000				
				905.020 TT	Se al road	\$ * \$ \$ \$ \$	a a a a a	warder & a a a a a a a a a a a
				0.8.9.9	૾ૢૼૼૼૼૼ૱ૢૻ૱ૻૢૼ૱ૻૢૺૼૼૼૼ	ૣ૾ૼૼૼૼૼૼ૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	N 3 10 3	૾ૢૢૼ૱ૢ૱ૢૡ૽ૻ૾ૡૢૼ૾ૡૼ૾ૡૢૼ૾ૡ૽ૼ૾ૡ૽ૢ૽ૡ૽ૺ૾ૡ૽ૢૡ૽ૢૡ૽ૢૡ૽ૢૡ૽ૢૡ૽ૢૡ૽
Me	ssag	es						
[2	[2012-10-29/21:14:46] Project has been successfully loaded.							
D	[2012-10-29/21:15:08] Executing module: Profile							
12	[2012-10-29/21:15:08] Interactive module execution has been started							
•	1 General Strecution Errors							
rea	ready 01. Profile [srtm3_30m_stereo_18_8]							
933	933 file(s), 0 / 34 dir(s)							

Figura 8: Profilul topografic

folosesc stratul hipsometric pentru întocmirea unei hărți tematice, harta hipsometrică, pe care o mai numesc și harta treptelor morfologice, fiind harta care redă generalizat formele de relief în ansambluri hipsometrice [Grigore, 1979].

Din considerentele prezentate mai sus reiese că în geomorfologie, harta hipsometrică este harta care reprezintă altitudinea suprafeței terestre grupată în clase/intervale altitudinale, egale sau nu, funcție de folosirea acesteia:

a) intervale hipsometrice egale, când harta este folosită la reprezentarea grafică continuă (generală) a altitudinii, eventual și pentru obținerea unei histograme a frecvenței claselor altitudinale;

b) intervale hipsometrice inegale, când harta este folosită la reprezentarea grafică a altitudinii specifice unor unități sau forme de relief.

Atât în cazul analog, cât și in cel digital necesitatea clasificării hipsometriei este evidentă: ochiul uman nu poate distinge intervale specifice din reprezentarea curbelor de nivel și nici toată paleta de culori aferentă unei imagini digitale. Față de reprezentarea continuă a unei scări de culori, reprezentarea pe clase de hipsometrie cu o serie de culori aferente, eventual însoțită de umbrire reușește să prezinte privitorului o imagine concludentă a altitudinilor suprafeței terestre 9. Reprezentarea grafică a hărții hipsometrice poate fi folosită și ca suport pentru calculul curbelor hipsometrice sau a histogramei frecvenței claselor de altitudine, mai ales în format digital.

4 Calculul în SAGA

Se deschide SAGA GIS. Fişierul *SRTM3_30m_stereo_"rând"_"coloană".sgrd* se încarcă în aplicația SAGA GIS (FILE/GRID/LOAD) [™].

În fereastra SAGA WORKSPACE/DATA/TREE click dreapta pe gridul SRTM încărcat, apoi <u>Classification/Set Range to minimum/Maximum</u>. Finalitatea va fi că paleta de culori existentă va fi aplicată amplitudinii altitudinii, de la minimul până la maximul real al gridului, disponibil și în OBJECT PROPERTIES/DESCRIPTION, și nu valorile obținute de SAGA prin egalizarea histogramei la deschiderea rasterului (același efect se obține prin deschiderea histogramei obiectului, prin click dreapta pe acesta și alegerea **Histogram**, urmată de click dreapta pe ferestra obținută, până când histograma obținută nu își mai modifică valorile).

În SAGA WORKSPACE/DATA/TREE click dreapta pe rasterul încărcat, apoi *Classification/Create Lookup Table*. În fereastra nou deschisă se poate defini paleta de culori și numărul acestora. O paleta tipică utilizabilă în cazul hărților hipsometrice este disponibilă la http://www.geomorphologyonline.com/students_materials/Geomorfo/hipso.pal (funcție de tipul browserului setat ca predefinit, salvarea poate presupune operațiuni diverse, important fiind ca fișierul final să aibă extensia .pal). După descărcarea acestei palete de culori, ea poate fi deschisă prin apăsarea butonului *Load*. Paleta *hipso.pal* conține 4 culori, iar prin apăsarea butonului *Count* poate fi definit numărul de culori la o valoare mai mare (în cazul de față 10), funcție de numărul intervalelor hipsometrice alese. Prin apăsarea butonului *Okay*, paleta de culori aleasă va fi aplicată gridului.

Alegerea numărului de intervale hipsometrice se face prin următorul calcul. Ochiul uman nu poate percepe multe nuanțe de culori de aceea este ideală utilizarea a maxim 8-10 culori și nuanțe. Funcție de minimul și maximul altitudinal identificat în tabul Description, se calculează amplitudinea, se împarte la numărul de clase, iar valoarea obținută va fi rotunjită către cel mai apropiat număr întreg. Trebuie considerat și faptul că valoarea minimă va fi inclusă în prima clasă, iar maxima în ultima clasă, deci avem nevoie de 2 clase suplimentare, față de cele alese înițiale. De aceea trebuie pornit de la un număr mic de clase 6-8, la care se vor adăuga cele două, prima și ultima.

După aplicarea *Classification/Create Lookup Table*, în OBJECT PROPERTIES/SETTINGS, în meniul *Colors*, *Type* este *Loockup table*, acesta putând fi editat mai jos. Hotărându-ne la 10 clase cu interval de 100 m spre exemplu, putem edita intervalul claselor prin editarea câmpului *Minimum* şi *Maximum*. După terminarea editării se apasă *Okay* şi apoi OBJECT PROPERTIES/SETTINGS/APPLY.

Figura 9: Harta hipsometrică cu intervale egale

Fig. 3 Harta hipsometrică a formelor de relief

Figura 10: Harta hipsometrică cu intervale inegale

Data			Cr	eate Lookup Table			
⊡ IIII 30; 1100x 1100y; 01. srtm3_30m	488338.951000> 흥 stereo_18_8 srtm3_30m_stereo_18_8		E	Options Colors	10 colors	-r.	Okay
	Close Save Save As	Sec. 33	ľ	Classification Type	equal intervals	Là	Cancel
	Save As Image Add to Map	The second					Load
	Histogram Scatterplot Copy Settings from other Layer	516		7			Defaults
	Classification	Classificaton	C	colors colors			
	000 029	Set Range to Standard Deviation (1.5) Set Range to Standard Deviation (2.0)					

Figura 11: Clasificarea rasterului

Figura 12: Paleta de culori hipsometrice

01. srtm3_30m_ste	ereo_18_8	×
South	661655.04	
North	694625.04	
South-North	32970	
Cell Size	30	
Number of Columns	1100	
Number of Rows	1100	
Number of Cells	1210000	
No Data Cells	0	
Value Type	4 byte floating point nu	
Value Minimum	623.03	
Value Maximum	2233.37	
Value Range	1610.34	
No Data Value	-9999	
Arithmetic Mean	1263.09	
Standard Deviation	202.39	
Memory Size [MB]	4.62	
•	F	_
Settings	Description Leger 4	•

Figura 13: Tabul Description

Figura 14: Crearea tabelului de culori

În fereastra WORKSPACE/MODULES este disponibilă în cadrul librăriei <u>Terrain Analysis</u> -<u>Lighting, Visibility</u>, funcția <u>Analytical Hillshading</u>. La **Data Objects**, se alege la **Grids**, ca **Grid System** extinderea disponibilă (30; 1100x 1100y; coordx coordy), ca >> Elevation rasterul SRTM, iar la << Analytical Hillshading să fie ales create. La **Options**, **Shading Method** poate fi setat: Standard, Standard (max. 90 degrees), Combined Shading şi Ray Tracing. Metoda Standard presupune luarea în calcul a unei singure poziții a Soarelui, definită de Azimuth [poziția Soarelui pe bolta cerească, în grade față de direcția nord], Declinație [înălțimea Soarelui pe bolta cerească, în grade față de planul orizontalei] şi Exagerare. Metoda Combined Shading calculează umbrirea funcție de mai multe poziții, după care mediază valorile obținute. Metoda Ray Tracing presupune aplicarea unui model complex, care include şi reflecțiile razelor de pe suprafața terestră. După setarea parametrilor doriți se rulează funcția prin apăsarea Okay.

Semnalul sonor, bara albastră din partea dreaptă jos și mesajul din fereastra MESSAGES: <u>Module execution succeeded</u> arată că funcția a fost finalizată cu succes. Ca urmare a rulării funcției, în WORKSPACE/DATA/TREE, sub *Grids* apare 1 raster numit 02. Analytical Hillshading, care va fi salvat prin click dreapta **Save As...**, în E:/Geomorfologie/nume_prenume.

În fereastra WORKSPACE/DATA se selectează cele două rastere, rasterul SRTM cu paleta de culori de tip hipsometric și umbrirea analitică (cu click stânga și tasta CTRL apăsată), apoi click dreapta și Show. Va apărea în zona centrală o fereastră Add layer to selected map, unde se alege New și apoi OK. În fereastra WORKSPACE/MAPS, în harta aferentă se asigură că rasterul SRTM se află sub rasterul umbrire analitică (prin mutarea cu click stânga), iar apoi se selectează rasterul umbrire analitică, și în ferestra dreaptă OBJECT PROPERTIES/SETTINGS se va seta în **Options/Display/Transparency** la 50%.

În momentul în care suntem mulțumiți de rezultat, putem exporta harta ca fișier .pdf, prin click pe SHOW PRINT LAYOUT, iar apoi **Print**, alegerea imprimantei virtuale doPdf, definirea căii fișierului și **Save**, apoi OK.

5 Întocmirea planșei

Prin dublu click pe fişierul/fişierele încărcat/-te în SAGA în fereastra WORKSPACE/DATA/TREE, în zona centrală se va deschide o hartă reprezentând fişierul respectiv. În această fereastră se va alege MAXIMIMIZE, astfel încât ea să ocupe întreaga fereastră centrală. Prin apăsarea butonului SHOW PRINT LAYOUT I va apărea macheta hărții, care pe lângă conținutul prorpriu zis, conține și riglele X,Z, scările grafice X,Z, scara numerică și legenda obiectelor din hartă. Prin apăsarea butonului PRINT va apărea fereastra **Print**, de unde se alege imprimanta virtuală **doPdf** și se apasă **Print**. Va apărea fereastra **doPDF** - **Save PDF** file unde se va alege **Browse** și se va defini calea către $E:/Geomorfologie/nume_prenume$, se va alege numele fișierului, după care **Save** și apoi **OK**. În câteva secunde se va deschise fișierul .*pdf* salvat.

Se deschide aplicația Inkscape, se deschide template-ul de hartă A4, se importă fișierele .png

- și .pdf, după care se introduc detaliile necesare:
 - 1. Titluri: Profil topografic transversal prin valea râului Repedea, Harta hipsometrică MNAST srtm3_30m_"rând" _"coloană"
 - 2. folosind unealta **Text** A se scrie numele variabilei și unitatea de măsură, deasupra axelor/scării de culori: [m] pentru distanță, pe axa X și altitudine, pe axa Y, [m] pentru altitudine, cu mărimea fontului de 12;
 - 3. se degrupează obiectul generat de importul fișierului .*pdf* (Ctrl+U) conținând harta pantelor și a curburii în plan și se șterg scara numerică și numele rasterului, care vor fi înlocuite de numele variabilei și unitatea de măsură;
 - 4. Se salvează fișierul prin FILE/SAVE AS... cu denumirea LP02_nume_prenume_grupăsemigrupă.svg în directorul E:/Geomorfologie/nume_prenume;
 - 5. Se salvează ca fișier .pdf prin FILE/SAVE A COPY... cu denumirea LP02_nume_prenume_grupăsemigr în directorul E:/Geomorfologie/nume_prenume.

Bibliografie

- S.K. Duggal. Surveying. McGraw-Hill Book Company, 2004.
- Dan Dumitriu. Sistemul aluviunilor din bazinul râului Trotuş. Edit. Univ. Ștefan cel Mare Suceava, 2007.
- Mihai Grigore. Reprezentarea grafică și cartografică a formelor de relief. Editura Academiei R.S.R., București, 1979.
- S.R. Snow and Slingerland R.L. Mathematical modeling of graded river profiles. *Journal of Geology*, 95:15–33, 1987.